INDUSTRIEZYLINDER, HYDRAULISCH IN PRÄZISIONSAUSFÜHRUNG

BAUREIHE 6092

doppeltwirkend, geschraubte Ausführung, 3 Befestigungsarten

EINLEITUNG INDUSTRIEZYLINDER, EINFACH- ODER DOPPELTWIRKEND MAX. 200 BAR

EHC Industriezylinder in Präzisionsausführung sind äußerst robuste Rundzylinder in einer kompakten Bauart. Hochwertige Komponenten wie Kolbenstangen, Rohre und Dichtungen in Verbindung mit einer sorgfältigen Fertigung erlauben Anwendung auch unter extremen Bedingungen. Die Industriezylinder können auf Wunsch modifiziert werden und sind aufgrund ihrer geschraubten Bauweise schnell und kostengünstig herzustellen. Bei herausfordernden Anwendungen, speziellen Abmessungen bzw. besonderen Bauformen sprechen Sie uns bitte an.

Einfachwirkende Zylinder: Mit einfachwirkenden Zylindern können nur Druckkräfte übertragen werden. Das Einfahren der Stange erfolgt nur über das Eigengewicht des Kolbenstange bzw. der Last. Bitte fragen Sie im Bedarfsfall an.

Doppeltwirkende Zylinder: Mit diesen Zylindern werden Zug- und Druckkräfte übertragen. Der Aufbau hängt in der Regel von ihrem Einsatz und dem Druckbereich ab.

INHALTE

EINLEITUNG INDUSTRIEZYLINDER, EINFACH- ODER DOPPELTWIRKEND MAX. 200 BAR	2
HYDRAULISCHE INDUSTRIEZYLINDER, ÜBERSICHT LIEFERBARE ZYLINDERTYPEN	3
PRÄZISIONSZYLINDER, DOPPELTWIRKEND GRUNDAUSFÜHRUNG	4/5
PRÄZISISIONSZYLINDER, DOPPELTWIRKEND MIT GELENKAUGE BODENSEITIG	6
PRÄZISISIONSZYLINDER, DOPPELTWIRKEND MIT GELENKAUGE STANGENSEITIG	7
PRÄZISIONSZYLINDER, DOPPELTWIRKEND MIT SCHWENKZAPFEN	8
PRÄZISISIONSZYLINDER, DOPPELTWIRKEND MIT FUSSBEFESTIGUNG	9
TECHISCHEN ANGABEN ERMITTLUNG DER ZULÄSSIGEN KNICKBELASTUNG	10
KNICKLAST – DIAGRAMM NACH EULER	11

Merkmale der EHC - Industriezylinder:

- Kompakte Bauform
- 100% Funktionsprüfung
- Flexibilität in Abmessungen und Ausführung
- Fertigung und Dokumentation nach Deutschen Normen
- Schnelle und termingerechte Lieferung

Unsere Standard-Zylinder mit möglichen Modifikationen:

- Hub, Einbau- und Anschlussmaße
- Gehäuse- Stangen- und Kolbendurchmesser
- Befestigungsarten
- Werkstoffe: Standard bis Exotisch
- Druckstufen von 160 320 bar
- Mit Endlagendämpfung (ein- oder beidseitig, einstellbar oder fest)
- FKM Dichtungen oder Sonderdichtungsmaterial (bis Servoqualität mit Haltequalität)
 - Servoqualität: Gleitringdichtung PTFE, reibungsarm
 - Servoqualit\u00e4t f\u00fcr Haltebetrieb: nahezu leckagefreie Abdichtung, statisch und dynamisch
- Mit Wegmesssystem oder Positionsüberwachung
- Temperaturbereich bis + 180 Grad
- Oberflächenbeschichtung: Lackierung, Vernickelung, Korrosionschutz durch spezielle Härtung
- Meerwasser-und Säurebeständige (Mat. 1.4404)

HYDRAULISCHE INDUSTRIEZYLINDER, ÜBERSICHT LIEFERBARE ZYLINDERTYPEN

Zylinder	Druckstufe in bar	Kolben Ø	Hub
KLEINZYLINDER mit/ohne Endlagendämpfung	160 bar	12-20 mm	20-100 mm
INDUSTRIEZYLINDER	200 bar	32-200 mm	25-1.200 mm
PRÄZISIONSZYLINDER	160 bar	32-100 mm	80-3.000 mm
SCHWERLAST- / GROSSZYLINDER mit/ohne Endlagendämpfung	320 bar	200-1.600 mm	bis 10.000 mm
TELESKOPZYLINDER	200 bar	40-165 mm	nach Vorgabe
BLOCKZYLINDER STAHL	500 bar	16-160 mm	25-100 mm
BLOCKZYLINDER ALU	350 bar	25-100 mm	30-100 mm
SONDERZYLINDER	Nach	Vorgabe	

Sonderzylinder: Wir fertigen alle Zylinder auch außerhalb dieser Parameter. Bitte senden Sie uns Ihren Entwurf, eine Zeichnung oder teilen Sie uns einfach Ihre Wünsche mit. Im Falle keiner Vorgaben fertigen wir unsere Präzisionszylinder nach folgenden Kriterien:

Ausführung: doppeltwirkend

Nenndruck: 160 bar Prüfdruck: 240 bar Einbaulage: beliebig

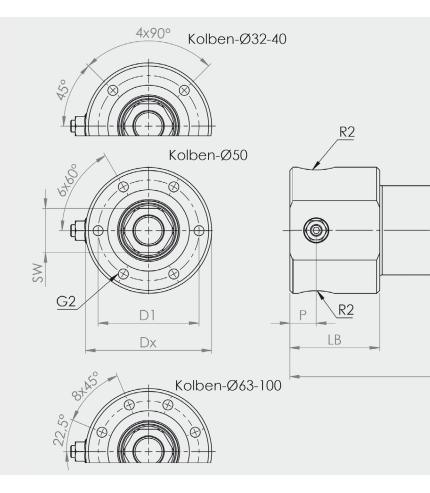
Für Druckflüssigkeit: Mineralöle DIN 51524 (HL/ HLP)

Druckflüssigkeitstemperatur: -20° bis +80° C Viskositätsbereich: 2,8 bis 380 mm3/s

Hubgeschwindigkeit: 0,5 m/s. (abhängig vom Leitungsanschluss)

Endlagendämpfung: keine

Kolbenstange: 20MnV6, hartverchromt und geschliffen Gehäuse: verzinkt mit Dickschichtpassivierung Dichtung: Kompaktdichtung (NBR) und Nutring - PU

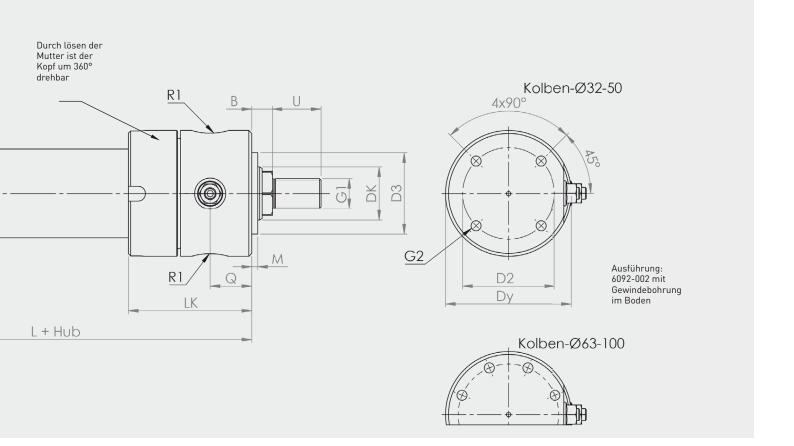

(nicht reibungsarm)

Hübe: kleinster möglicher Hub 80 mm

größter möglicher Hub 3.000 mm

PRÄZISIONSZYLINDER, DOPPELTWIRKEND GRUNDAUSFÜHRUNG

TYP 6092

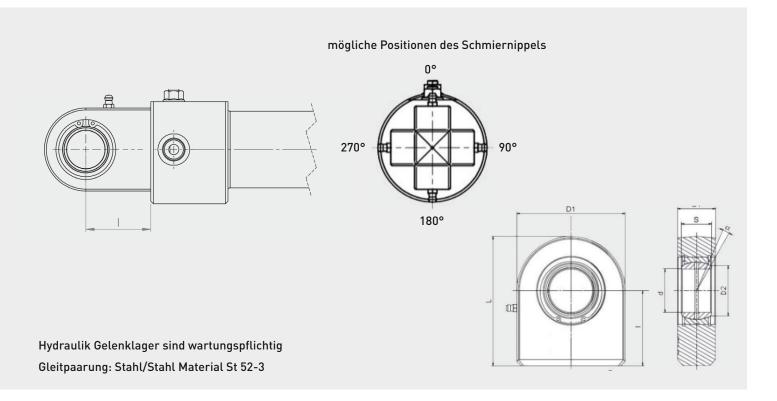

Ausführung: 6092-001 mit Gewindebohrungen im Kopf

Kolben Ø	Kolbenstangen Ø DK*	Druckkraft 160 bar (kN)	Zugkraft 160 bar (kN)	Kolbenflä- che cm²	Ringfläche cm²	G1	U
32	18	12.0	8,8	0.07	5,5	M12 x 1,5	23
OZ.	22	12,9	6,7	8,04	4,2	M14 x 1,5	26
40	22		14,1		8,8		
40	28	20,1	10,3	12,57	6,4	M16 x 1,5	28
50	28		21,6		13,5	M16 x 1,5	28
50	36	31,4	15,2	19,63	9,5	M22 x 1,5	36
63	36	40.0	33,6	04.45	21	M22 x 1,5	36
03	45	49,9	24,5	31,17	15,3	M28 x 1,5	38
80	45	00.5	55,1	E0.05	34,4	M28 x 1,5	38
00	56	80,5	41	50,27	25,6	M35x 1,5	50
100	56	405.5	86,3	50.57	53,9	M35 x 1,5	50
100	70	125,7	64,2	78,54	40,1	M45 x 1,5	60

Hervorgehobene Werte: Standard

PRÄZISIONSZYLINDER, DOPPELTWIRKEND GRUNDAUSFÜHRUNG PRÄZISIONSZYLINDER MIT GEWINDEBOHRUNG IM KOPF PRÄZISIONSZYLINDER MIT GEWINDEBOHRUNG IM BODEN PRÄZISIONSZYLINDER MIT GEWINDEBOHRUNG BEIDSEITIG [TYP 6092-000] [TYP 6092-001] [TYP 6092-002] [TYP 6092-003]

В	М	L	LB	LK	Q	R1	R2	Р	D1	D2	D3	Dx	Dy	SW	G2
16	2	90	54	76	22	61//	61//	17	42	42	30 f7	60	60	15	6 v M/ v 12 l=
16	3	90	54	76	ZZ	G1/4	G1/4	17	42	42	34 f7	60	60	15	4 x M6 x 12 lg.
17	3	98	57,5	82	25	G1/4	G1/4	14	50	50	36 f7	65	65	19	4 x M8 x 16 lg.
.,			37,0			2.,,4	3./7	7			30 17			24	- A MO A 10 tg.
17	4	109	60,5	83	28	G3/8	G3/8	18	68	68	55 f7	85	85	24	4/6 x M8 x 16 lg.
			30,0			30.0	75,0							30	
17	4	111	64	88,5	26	G3/8	G3/8	22	75	73	55 f7	95	90	30	8 x M8 x 16 lg.
27		1	1								58 f7			36	,
24	4	132	71	103	36	G3/8	G3/8	22	90	90	72 f7	114	110	36	8 x M10 x 16 lg.
27														41	
24	4	144	94	110	40	G1/2	G1/2	22,5	110	110	84	146	146	41	8 x M12 x 20 lg.
														55	

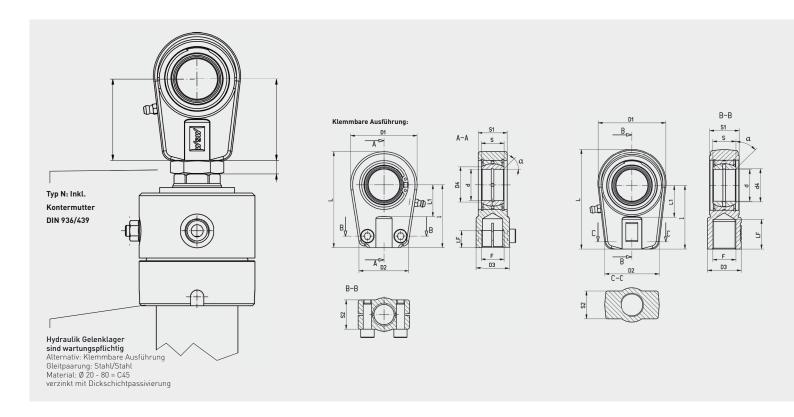


PRÄZISISIONSZYLINDER, DOPPELTWIRKEND MIT GELENKAUGE BODENSEITIG

PRÄZISIONSZYLINDER MIT GELENKAUGEN BEIDSEITIG

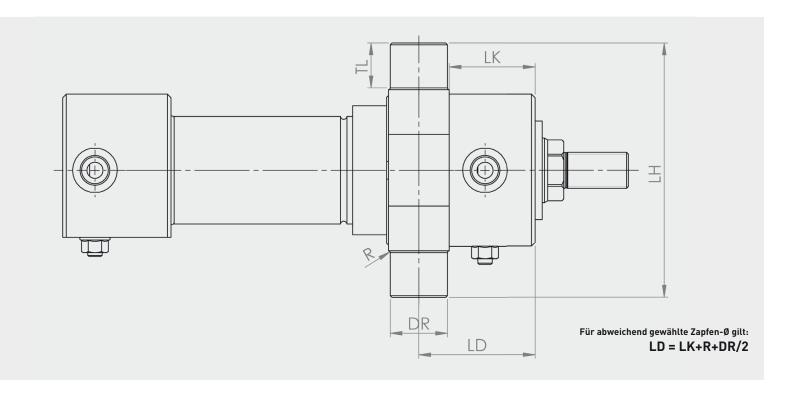
[TYP 6092-013]

TYP 6092-011


Kolben Ø		Abm	Kippwinkel	Tragzahlen (kN)						
	d	S	ι	D1	S1	D2	L	α	Dynamisch	Statisch
_										
32	12 -0,008	10 -0,12	27	34	8	17,5	44	11	8,15	15,6
32	16 -0,008	14 -0,12	35	48	17,5	20,7	59	10	21,2	59
40	20 -0,010	16 -0,12	38	50	19	24,1	63	9	30	67
40	25 -0,010	20 -0,12	45	55	23	29,3	72,5	7	48	69,5
50	30 -0,010	22 -0,12	51	65	28	34,2	83,5	6	62	118
63	30 -0,010	22 -0,12	51	65	28	34,2	83,5	6	62	118
03	35 -0,012	25 -0,12	61	83	30	39,7	102,5	6	80	196
80	35 -0,012	25 -0,12	61	83	30	39,7	102,5	6	80	196
80	40 -0,012	28 -0,12	69	100	35	45	119	7	100	305
100	40 -0,012	28 -0,12	69	100	35	45	119	7	100	305
100	45 -0,012	32 -0,12	77	110	40	50,7	132	7	127	386

PRÄZISISIONSZYLINDER, TYP 6092- 012 DOPPELTWIRKEND MIT GELENKAUGE STANGENSEITIG

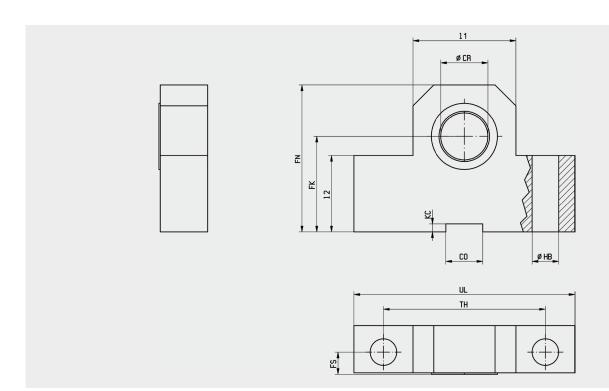
PRÄZISIONSZYLINDER MIT GELENKAUGEN BEIDSEITIG


[TYP 6092-013]

Kolben Ø	Dell											Kipp win- kel			Schraube ISO 4762-10.9	Anzugs- moment Nm			
	d	S	ι	Х	D1	D2	S1	S2	L	L1	D3	D4	LF	F	α	Dyn.	Stat.		
_																			_
32	12 +0,018	12 -0,18	38	6	32	32	11	15	54	14	16	15,5	17	M12x1,25	4	10,8	24,5	M5 x 16	7
32	16 +0,018	16 -0,18	44	8	40	40	14	15	64	18	21	20	19	M14x1,5	4	17,6	36,5	M6 x 16	12
40	20 -0,010	16 -0,12	50	8	56	46	19	17	80	25	25	24,1	17	M16x1,5	9	30	81,1	M8 x 20	30
40	25 -0,010	20 -0,12	50	8	56	46	23	21	80	28	25	29,3	17	M16x1,5	7	48	72	M8 x 20	30
50	30 -0,010	22 -0,12	60	11	64	50	28	26	94	30	32	34,2	23	M22x1,5	6	62	106	M8 x 25	30
63	30 -0,010	22 -0,12	60	11	64	50	28	26	94	30	32	34,2	23	M22x1,5	6	62	106	M8 x 25	30
03	35 -0,012	25 -0,12	70	12	78	66	30	28	112	38	40	39,7	23	M28x1,5	6	80	153	M10 x 30	54
80	35 -0,012	25 -0,12	70	12	78	66	30	28	112	38	40	39,7	23	M28x1,5	6	80	153	M10 x 30	54
80	40 -0,012	28 -0,12	85	14	94	76	35	33	135	45	49	45	30	M35x1,5	7	100	250	M10 x 35	59
100	40 -0,012	28 -0,12	85	14	94	76	35	33	135	45	49	45	30	M35x1,5	7	100	250	M10 x 35	59
100	50 -0,012	35 -0,12	105	18	116	90	40	37	168	55	61	56	40	M45x1,5	6	156	365	M12 x 40	100

PRÄZISIONSZYLINDER, DOPPELTWIRKEND MIT SCHWENKZAPFEN

TYP 6092-008



Kolben Ø	Abmessungen (mm)													
	DR f7	R	LH	TL	LK									
_														
32	16	1,5	99	12	46									
40	20	1,5	122	16	50									
50	25	2,5	145	20	48									
63	32	2,5	170	25	65,5									
80	40	2,5	199	32	58									
100	50	2,5	240	40	61									

FUSSBEFESTIGUNG FÜR PRÄZISIONSZYLINDER, DOPPELTWIRKEND

TYP 6092-008

ISO 8132; Material: ST 52-3, Buchse RG7

Nenn- kraft [kN]	Kol- ben Ø		Abmessungen (mm)													
		CR	CR FK FN HB NH TH UL CO KC FS L1 L2 L3													
		H7	js12	max.	H133	max.	JS14	max.	N9	+0,3	js14			-		
12,5	32	16	40	59	11	21	50	80	16	4,3	10	30	30	1,0		
20	40	20	45	69	11	21	60	90	16	4,3	10	40	38	1,5		
32	50	25	55	80	13,5	26	80	110	25	5,4	12	56	45	1,5		
50	63	32	65	100	17,5	33	110	150	25	5,4	15	70	52	2,0		
80	80	40	76	120	22	41	125	170	36	8,4	16	88	60	2,5		
125	100	50	95	140	26	51	160	210	36	8,4	20	100	75	2,5		

TECHISCHE ANGABEN ERMITTLUNG DER ZULÄSSIGEN KNICKBELASTUNG

ERMITTLUNG DER ZULÄSSIGEN KNICKBELASTUNG F_{κ} zul

Kolbenstangen mit einer verhältnismäßig großen Baulänge gegenüber ihrem Durchmesser müssen auf ihre Knickung berechnet werden.

Wird die zulässige Knickbelastung überschritten, besteht die Gefahr, dass die Kolbenstange sich plastisch verformt. Die Berechnung der Knickbelastung basiert auf der Länge des Zylinders im ausgefahrenen Zustand in Abhängigkeit zur jeweiligen Befestigungsart im senkrechten Einbaufall.

Für eine überschlägige Berechnungen ist das Diagramm nach Euler hilfreich. Bei einer gegebener Druckkraft (FK zul), einem gewählten Sicherheitsfaktor (S) und der freien Knicklänge (SKĐĐ) ergibt sich hier sehr schnell der notwendige Kolbenstangendurchmesser.

Beispiel: (abzulesen im Knicklast-Diagramm)

maximale Kraft: F_{κ} zul = 70.000 N

Sicherheitsfaktor: S = 3,0 freie Knicklänge: SK = 1,50 m

Der kleinste zulässige Kolbenstangendurchmesser (dK)

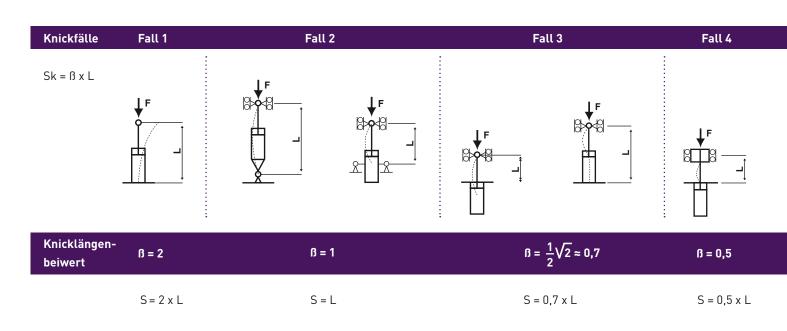
beträgt demnach 45 mm.

Grundformel:

$$F_{K} zul = \frac{\pi^{2} x E x I^{1}}{S x S_{K}^{2}}$$
 (nach Euler)

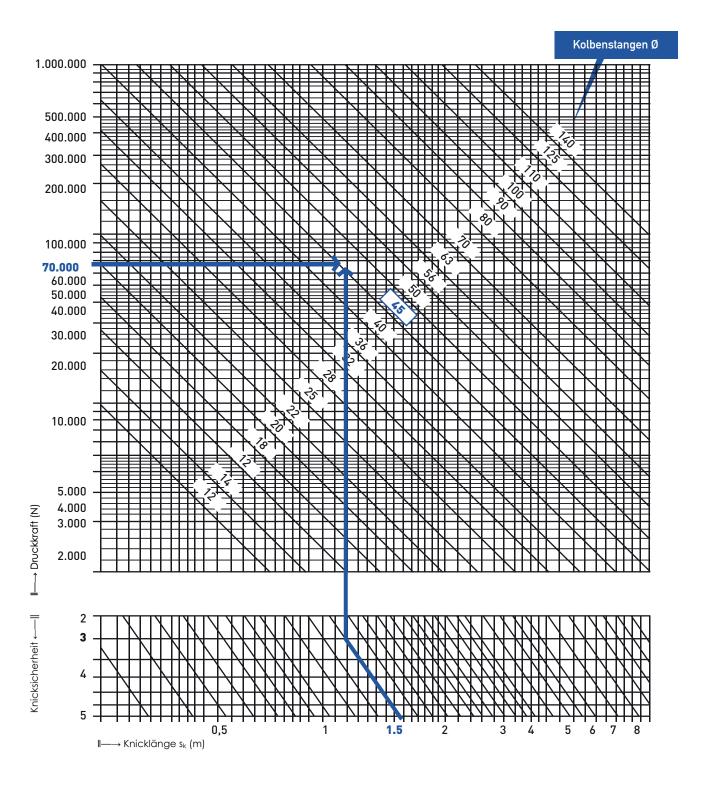
 F_{κ} zul = maximale axiale Kraft [N]

E = Elastizitätsmodul des Kolbenstangenmaterials[E=210000 N/mm²]


l¹ = Trägheitsmoment der Kolbenstange

(Rundmaterial:
$$11 = \frac{\pi \times d_k^4}{64}$$
) [mm⁴]

 d_{κ} = Kolbenstangendruckmesser [mm]


S = Sicherheitsfaktor mögliche Faktoren 2-5, [üblich Faktor 3]

 S_{K} = freie Knicklänge, sie wird dem Belastungsfall entsprechend gewählt. $S_{K} = B \times S$

